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Calculation is presented of  the influence of  the normal velocity component  on the directional charac- 
teristics of  a three-segment electrochemical probe in the vicinity of  a stagnation or a separation point. 
The results obtained here for a 2D flow corresponding to an axisymmetric flow having a stagnation 
point show quantitative differences, especially in the stagnation region, with respect to an earlier 
calculation performed on a 2D flow corresponding to a planar flow having a stagnation line. An 
experimental study with such a probe is then reported which demonstrates the possibility of  this 
arrangement in the stagnation region of  an immersed jet. 

1. Introduction 

The three-segment electrodiffusion probe has been 
recently developed to study liquid flow close to a 
wall (for example, see [1-4]). From the three 
measured diffusion currents of a three-segment 
probe, more information about the flow field than 
the two components of the velocity gradient at the 
wall can be obtained. Wein and Sobolik [5] calculated 
the influence of the velocity normal to the wall on the 
directional characteristics (i.e. the dependence of the 
elementary currents of the segments on the flow direc- 
tion) in the case of a 2D planar flow with stagnation. 
Sobolik et al. [6] experimentally confirmed these 
results with a three-segment electrode flush mounted 
in a rotating disc. 

In real flow situations, the local velocity distribu- 
tion near the wall can be more complicated than a 
two-dimensional one. An example of such a situation 
is the flow in a bubble column induced by a bubble 
passing the wall. It is anticipated that the 2D flows 
(axisymmetric or planar) with stagnation are asymp- 
totic cases of real flows from the view point of the 
influence of a normal velocity component on the 
directional characteristics. 

However, as it is not justified to apply the results 
established for a 2D planar flow situation [6] to a 
2D axisymmetric flow situation, we describe, in this 
paper, a study of the directional characteristics in 
radial axisymmetric flow with stagnation. Probe 
inertia will not be considered here as only steady or 
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quasisteady conditions are implied. In a second part, 
the flow in the stagnation region of an immersed jet 
is studied with a three-segment probe. 

2. Theoretical background 

A fluid stream with a circular cross section impinges 
on a wall orthogonally to its surface, and then flows 
radially parallel to the wall. Such a case occurs near 
a stagnation point of a body of revolution in a flow 
parallel to its axis. The problem is defined in cylind- 
rical coordinates (r ,~,z)  (see Fig. 1). According to 
Prandtl's boundary layer theory, a potential flow 
with velocities U(r) and W(z)  and a boundary layer 
flow with vr(r, z) and vz(r, z) can be defined [7], with 

U = ar and W = - 2 a z  (1) 

and 

Vr = 1.312(a3/u)l/2zr = Azr 
(2) 

v z = _ l . 3 1 2 ( a 3 / u )  1/2z 2 = - A z  2 

and the boundary conditions 

vz = vr = O f o r z = 0  (3) 
v r = U for z ~ ec 

The boundary layer thickness defined as 6h = 
2(u/a) 1/2 does not depend on the distance from the 
stagnation point and the electrode placed in the stag- 
nation point is so-called uniformly accessible. 

The wall velocity gradient then reads: 

Ovr _ Ar (4) 
q -  Oz 

It follows, from Equations 2 and 4, that the wall 
velocity gradient is proportional to a constant A and 
the normal velocity component is equal to the 
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Fig. 1. Stagnation region in axisymmetric flow. 

product of this constant and the squared distance 
from the wall with a negative sign. 

From the velocity distribution, it is possible to solve 
the convective diffusion equation. After Acrivos [8], 
Newman calculated [9] the expression for the local 
limiting current density on an electrode embedded in 
an axisymmetric body (see Fig. 2): 

nFc(D/3)2/3 Iql 1/2r3/2 dx ]  -1/3 
id-- I'(4/3) [J~ ~ (Iqlr) 1/2 (5) 

where both r and q are functions of the integration 
variable x which has its origin at the leading edge of 
the electrode. Without changing the value of the inte- 
gral in Equation 5, a new x coordinate can be defined 
as the curvilinear coordinate with its origin at the stag- 
nation point (or separation point if the Reynolds 
number is low enough, as the flow may be reversed 
in Fig. 2). This change provides an obvious simplifica- 
tion since in the following, a plane surface, instead of 
a body of revolution, is considered. For example, for 
an axisymmetricjet impinging on a wall, r = x, q = A r  

and the limiting current density takes the following 
form: 

nFc(D/3)2/3 [ V ] - 1 / 3  
id(r)  - -  F(4/3) r0 A1/2x2 d x  A1/2r (6) 

with the forward edge of the electrode in r0. 
When the stagnation point is located on the micro- 

electrode area, then 

i* = nFc(D2A/3)I/3 
r (4/3)  (7) 

represents the local current density (because r 0 = 0) 
and the electrode is uniformly accessible from the 
standpoint of mass transport. 

Equation 6 can be written as 

id(r):i*[l-- (r@)31-1/3 (8) 

r(x) 

V 

S P 

Fig. 2. Electrode (WE) placed on an axisymmetrical body. 

3. Directional characteristics of  radial segments on 
circular electrodes 

3.1. Forward  cri t ical  region A > 0 

A circular electrode of radius R, with its centre at a 
distance h from the stagnation point, and its surface 
element, which will be used for the calculation of 
quadrature, are shown in Fig. 3. By integration of 
Equation 8, the limiting current density on the elec- 
trode is obtained as [10] 

 j?i = ri d dr d~  i0 ~ -~  rl • 

2i*J~Ptlr3 r 2 
- -  7rR 2 0 r, (r  3 - r~)l /3 d r d ~  

i ~ ~ t  
i 0 = ~ [r~ (~) -r~(~)]2/3 d~ (9) 

As the nature of the flow is not specified in the above 
calculations, Equation 9 also holds for the separation 
region. However, at the separation point itself, the 
theory does not apply. 

The following relations (see Fig. 3) and the calcula- 
tion of the current through the denoted segments, 
Equation 7, were used for the numerical treatment 
of Equation 9: 

sin ~t = R / h ,  /3t = 7r/2 - ~ t  ] 

rl,3 = h [cos  q , + { c o s 2  • - 1 + (n/h)2)l/2] I (lO) 
r2 = h sin/3/[sin(Tr - ~ -/3)] 

For R = h, i.e. when the stagnation point lies on the 
edge of the electrode, the calculated value of the 
limiting current density is equal to i*. The results for 
the total current are compared to those previously 
obtained from 2D planar flow in Table 1. i 0 is 
the current density in an axisymmetric flow from 
Equation 9, ip is the limiting current density in 
a 2D planar flow, after Wein and Sobolik [5] defined 
by 

ip/iLp = 1 --  2e;2/99 - t~4/309 (11) 

iLp is the limiting current density according to 
L6v~que [11] with the velocity gradient defined in 
the centre of the probe and a 2D planar flow: 

iLp = 1.114(h/R)U3i * (12) 

Using the velocity gradient of the 2D axisymmetric 
flow, the L~v~que current density is 

iLo = 0 . 8 8 4 ( h / R ) l / 3 i  * (13) 

The parameter n is defined later in Equation 18. 
Now, the circular electrode is segmented into 

several circular sectors, separated by infinitely thin 
insulating gaps. The directional characteristics, 
which represent the dependence of the normalized 
currents on each segment (with respect to the total 
current) as functions of the angle between the main 
flow direction and an arbitrarily prescribed reference 
radius of the probe, will be calculated in a similar 



678  F.  B A L E R A S  E T  A L .  

S ! 

. ~ ~  

Fig. 3. Electrode near the stagnation point with the symbols 
used for the calculation of  the current on a radial segment. 

way to that described by Wein and Sobolik [5] and 
Deslouis et aL [4]. As a first step, the current 1(/3) 
through a segment having an apex angle/3 and one 
arm directed to the stagnation point, as schematized 
in Fig. 3, is determined. Then, the current on a sector 
of angle 2a, with its bisector making an angle 0 + a 
with the flow direction, can be deduced as follows: 
as an example, for 0 + 2a < 7r, the current I(2a) = 
I(O + 2~) - I(O). Therefore, by symmetry consider- 
ations and algebraic combinations of currents, the 
current on any arbitrary segment can be calculated. 

From Fig. 3, two cases must be distinguished 
according to the value of/3: 

2 Is1 = 2i* (r 3 - r~) 2/3 dkO 

~t 
Is2 = + 2i* [ r /2/3 

J %  
d~  

for/3 ~< fit [ 

(14) / f o r / 3  > /3t 

The results will be given later together with the results 
corresponding to separation region. 

3.2. Rear critical region A < 0 

The flow in the opposite direction to that in Fig. 1 is 
now considered. This situation is less usual but a 
boundary layer flow, as described by Equation 2 
with A < 0, may exist, e.g. in the flow around a 
sphere at low Reynolds numbers. The point S is the 
separation point. The probe near the separation 
point is shown in Fig. 4. For calculation of the 
limiting current density, Equation 5 will be used 

Table 1. Limiting current of  a circular electrode as function of  the dis- 
tance from the stagnation point. The different current densities were 
defined in Equations 9, 11-13 and in references [5] and [11] 

R /h io / i* ip / i* iLo / io iLp/ i p 

0.1 1.907 2.400 0.999 1.000 
0.2 1.519 1.903 0.995 1.001 
0.3 1.335 1.661 0.990 1.002 
0.4 1.223 1.507 0.982 1.003 
0.5 1.147 1.396 0.971 1.005 
0.6 1.093 1.311 0.959 1.008 
0.7 1.055 1.241 0.944 1.011 
0.8 1.027 1.183 0.927 1.014 
0.9 1.009 1.132 0.908 1.019 
1.0 1 1.088 0.884 1.023 

again. The distance x is measured in the flow direc- 
tion. The leading edge of the electrode r 3 (~) is the 
origin of the x direction. The following relations 
then hold: 

r(x) = r3(k~ ) - x, Iql = - A r  (15) 

The limiting current density is 

ia = i* 3-1 (16) 

The limiting current through the whole electrode, 
calculated by numerical integration, does not depend 
on the flow direction and is given in Table 1. The 
directional characteristics were calculated by means 
of the combinations of the currents through the 
segments shown in Fig. 4. 

The following relations were used: 

2 /sl = 2i* (r~ -- r3) 2/3 d~  when/3 >//3 t 

Ot 
/s2 = Isl -}- 2 i*  [ (r~ - -  r~) 2/3 d ~  w h e n / 3  < fit 

d~9 s 

(17) 
Wein and Sobolik [5] and Sobolik et al. [6] have 
introduced a parameter e; which expresses the ratio 
of the maximum difference of the velocity gradient 
at the centre and the boundary of the probe and the 
wall gradient at the centre of the probe. Using the 
same definition, t~ is redefined for the stagnation 
region: 

= 6q/q = A R / A h  = R / h  (18) 

For the separation region, the difference has the 

Fig. 4. Electrode near a separation point. Same symbols as in Fig. 3. 
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Fig. 5. Meaning of the segment angle 2a and flow angle 0: (a) Near a 
stagnation point, (b) near a separation point. 

opposite sign and 

t~ = 6 q / q  = - A R / A h  = - R / h  (19) 

By numerical integration of Equations 9, 14 and 17 
the directional characteristics can be obtained, i.e. the 
dependence of  the normalized current through a 
segment of  angle 2a on the flow angle 0. The flow 
angle 0 is defined as the angle between the flow direc- 
tion at the centre of the electrode and the axis of the 
segment (see Fig. 5). The dependence of  the direc- 
tional characteristics on the value of t~, for a = 7r/3 
as an example (three-segment electrode), is shown in 
Fig. 6. 

When the flow is towards the wall, the differential 
current between the front and rear segments 
decreases, and the directional characteristics are 

flattened, whereas when the flow is away from the 
wall, this difference increases up to ~ = - 0 . 7 5 .  For  

< - 0 . 7 5 ,  i.e. very close to the separation point, 
the influence of the radial flow, which transports 
fresh liquid to the rear segment, dominates the 
influence of the normal flow and the directional 
characteristics are flatter as t~ becomes smaller. 

The directional characteristics were fitted by the 
Fourier series: 

I(~,  0, /~) n 
OL 

F ~ cA(~) sin(ma) cos(m0) (20) 
7rR2i * - -  7 r  

m = l  

In fact, when ~ = :E 1, the directional characteristics 
must be totally flat because, for symmetry reasons, 
the current on each segment is proportional to the 
segment angle 2a and is not influenced by the con- 
centration distribution over the other segments. 
Therefore, ~ n =  1 CmA(~) sin(ms) cos(m0) = 0 what- 
ever the values of a and 0 which means that the 
Cmh(±l) coefficients are all zero. The coefficients 
CA(~;) for ~ values different from :El are given in 
Table 2. 

For  practical use, it is convenient to express the 
coefficients C A as functions of coefficients C m (see 
Wein and Sobolik [5]) and coefficients Km containing 
the influence of the normal component: 

C A : Cmgrn(t~ ) 

= Cm(1 - Elmt~ - E2mt~ 2 - g 3 m l q ,  3 - E4rn/'i; 4) 
The values of C m and E,m are given in Table 3. 

4. Discussion 

The definition of  n determined from the geometry (see 
Equations 18 and 19) is the same for planar and 
axisymmetric flows with stagnation or separation, 
i.e. the velocity gradient depends linearly on the 
distance from the  stagnation (or separation) point. 
However, there is a substantial difference in the struc- 
ture of the flows. From the equation of continuity, 
more fresh solution approaches the probe from the 
normal direction in the axisymmetric flow with 
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Fig. 6. Influence of the normal velocity component 
on the directional characteristics (normalized 
currents) in an axisymmetric flow, with c~ = 7r/3 
(three-segment electrode). 



680 F. B A L E R A S  E T  AL.  

Table 2. Coefficients CAm 

c( c; cJ 

-0.9 0.17620 -0.02238 0.00593 0.00198 0.00070 -0.00023 
-0.8 0.17968 -0.02083 0.00443 -0.00091 0.00003 0.00014 
-0.7 0.18020 -0.01825 0.00263 0.00006 -0.00037 " 0.00021 
-0.6 0.17823 -0.01499 0.00084 0.00075 -0.00045 0.00007 
-0.5 0.17402 -0.01130 -0.00076 0.00109 -0.00030 -0.00012 
-0.4 0.16779 -0.00738 -0.00204 0.00110 -0.00002 -0.00026 
-0.3 0.15970 -0.00343 -0.00293 0.00084 0.00028 -0.00029 
-0.2 0.14993 0.00039 -0.00339 0.00040 0.00050 -0.00020 
-0.1 0.13867 0.00392 -0.00341 -0.00013 0.00058 -0.00003 

0.0 0.12614 0.00702 -0.00303 -0.00064 0.00050 0.00015 
0.1 0.11256 0.00953 -0.00230 -0.00103 0.00029 0.00027 
0.2 0.09821 0.01136 -0.00133 -0.00124 0.00000 0.00029 
0.3 0.08336 0.01241 -0.00021 -0.00120 -0.00028 0.00020 
0.4 0.06835 0.01261 0.00090 -0.00094 -0.00048 0.00003 
0.5 0.05353 0.01194 0.00185 -0.00047 -0.00053 -0.00016 
0.6 0.03929 0.01041 0.00248 0.00009 -0.00038 -0.00026 
0.7 0.02608 0.00811 0.00263 0.00060 -0.00008 -0.00020 
0.8 0.01445 0.00524 0.00218 0.00085 0.00024 -0.00001 
0.9 0.00518 0.00219 0.00114 0.00063 0.00033 0.00017 

Table 3. Coefficients C,, and Enm 

rn 1 2 3 4 5 

Cm 0.1261 0.0070 -0.0030 -0.0006 0.0005 
Elm 1.045 3.930 1.646 -4.759 0.717 
E2m 0.412 4.220 5.604 8.350 9.452 
E3m -0.358 2.481 -3.200 9.406 - 1.001 
E4m -0.080 -1.477 3.627 -10.50 -12.14 

stagnation than in the planar one. Therefore, the 
directional characteristics in axisymmetric flow with 
stagnation are flatter than in planar flow (compare 
Figs 6 and 7). 

The directional characteristics display maximum 
variation for ~ = - 0 . 7 5  in axisymmetric flow. For 

<-0 .75 ,  i.e. for the electrode very close to the 
separation point, the trailing effect of the forward 
segment is not as strong as the flow of fresh solution 
in the radial direction on the rear segment, i.e. the 
segment closer to the point of separation. The 
following simulation was done to estimate the errors 

which may occur when planar theory is used to eval- 
uate the data measured with the three-segment probe 
in an axisymmetric flow with separation. For different 
given values of ~, the directional characteristics were 
calculated for axisymmetric flow and these character- 
istics were then fitted by the formula established for 
planar flow. The resulting ~p values for planar flow 
are shown in Fig. 8. 

5. Application to flow mapping in an impinging jet cell 

Confirmation of the above theory was attempted by 
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Fig. 7. Influence of the normal velocity component 
in the directional characteristics (normalized 
currents) in a planar flow. 
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Fig. 8. Comparison of t~p calculated by means of the planar flow 
theory with ~ defined for anaxisymmetric flow. 
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plotting the directional characteristics of a real three- 
segment probe in the stagnation region of an 
impinging jet cell, and trying to estimate, at the 
same point, both the parallel and normal velocity 
components of  this flow. 

By measuring the total current and the elementary 
currents relative to each segment, it is possible to 
measure q and ~ separately. They both contain r 
which is the distance from the stagnation point to 
the probe centre. Then, by eliminating r between the 
expressions for q and ~, the first coefficient of the velo- 
city expansion in the normal direction is obtained for 
this flow: 

A = q t~ 

R 

The experimental impinging jet cell, is shown in Fig. 9. 
It was recently constructed and its mass transfer 
characteristics assessed by a.c. impedance [12]. The 
hydraulic circuit consists of  the jet cell, a pressure 
fluctuation damping vessel (vol. 1 dm3), a gear pump 
driven by a stepping motor  with a maximum 
controlled flow rate of 30mls -1. The electrolyte 
flowed through a long tube located at the axis of the 
vessel and either made of glass (int. diam. 7 mm) or 
stainless steel (int. diam. 12mm). The tube was fitted 
with a nozzle at its extremity. The experiments 
described here were conducted with the stainless steel 
tube equipped with a nozzle having an outlet diameter 
of  6 mm. The jet flow was laminar with a flat velocity 
profile approaching th e theoretical predictions. Under 
these conditions, the velocity in the jet axis remains 
uniform over a certain distance from the outlet. On 
the bot tom of  the cell, the three-segment probe was 
mounted on a device having two rotational axes: 
one off the probe centre, allowing the probe to be 
moved to different distances from the jet axis, and 
the second being the probe axis itself, in order to 
plot the directional characteristics for any value of  
the jet axis to the probe axis distance, r. The nozzle 

3-segment working 
microelectrode 

Fig. 9. Scheme of the impinging jet cell. 

was positioned 10mm above the bottom. The jet 
velocity was 10.6cms -1 which corresponds to a 
Reynolds number of  640. 

The three-segment probe was prepared according 
to the technique detailed in [2]. Three platinum wires 
of diameter 0.5mm were drawn together so as to 
obtain the final shape of three 120 ° circular sectors. 
To decrease the thickness of the insulating gap 
between the sectors, a variant to the t e c h ~ u e  
previously defined in [2] was used. Instead of rolling 
a glass wire around each platinum wire before gluing 
them together so as to prevent their mutual electrical 
contact, they were initially protected by a cataphoresis 
deposit. Then, as previously, the wires were glued 
together and an epoxy resin (Buehler) was poured in 
a stainless steel tube which served as the counter 
electrode. 

Due to the geometrical imperfections of the micro- 
electrodes, a preliminary calibration was necessary. 
This was done in a cone and plate device at low 
velocities which ensured perfectly viscometric con- 
ditions and was free from a normal velocity com- 
ponent. Therefore, the basic theory applies [1]. 
Then, the directional characteristics of  each segment 
(i.e. Ii6{1,2,3} =fi (0))  were determined, from which 
the experimental values of the Cm A coefficients (which 
differ from the theoretical ones given in Table 1) 
were calculated. Hence, the Eim coefficients for any 
~; value were assumed to be the same as the theore- 
tical expression of  Cm A was fitted to the experiments 
to determine the different ~ values. 
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0 60 120 180 240 300 360 
Flow angle ®' / degrees 

700 

Fig. 10. Directional characteristics of a three- 
segment probe in the impinging jet cell at 9.3 mm 
from the stagnation point. (n = 0). Probe diameter 
0.62 mm. 
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The  test  fluid was a 25 m o l m  -3 equ imo la r  po ta s -  
s ium fe r r i / fe r rocyan ide  so lu t ion  with  5 0 0 m o l m  -3 
K2SO 4 as suppor t i ng  electrolyte .  The po ten t i a l  
app l i ed  on  all three segments  was - 0 . 7 V ,  corre-  
spond ing  to the diffusion l imi t ing cur ren t  for  po ta s -  
s ium fer r icyanide  reduct ion .  

F r o m  the ca l ib ra t ion  in the cone -and-p la t e  device, 

Fig. 11. Velocity gradient as function of the radial 
coordinate in the stagnation region. Same probe as 
in Fig. 10. 

the to ta l  cur ren t  t h rough  the three-segment  p r o b e  
wi th  a d i ame te r  o f  0 . 6 2 m m  was found  to be 
I = 671/3, where  I is the  cur ren t  in # A  and  7 the 
veloci ty  g rad ien t  in s -1. The  ca l ib ra t ion  curve for  
n = 0 was also ob t a ined  in the imping ing  je t  cell 
a t  a d is tance  o f  9.3 m m  f rom the s t agna t ion  poin t ,  
where  the influence o f  the  n o r m a l  c o m p o n e n t  is 
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Fig. 12. Directional characteristics of the three- 
segment probe at r = 2.8mm from the stagnation 
point. ( ) Best fit for ~ = 0.21 with the axi- 
symmetric flow model. 
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Fig. 13, Directional characteristics of the three- 
segment probe at r = 0.95 mm from the stagnation 
point. ( ) Best for for ~ = 0.37 with the axi- 
symmetric flow model. 

Fig. 14. Directional characteristics of the three- 
segment probe at r = 0.8 mm from the stagnation 
point. ( ) Best fit for n = 0.52 with the axi- 
symmetric flow model. 
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negligible. The corresponding directional character- 
istics are shown in Fig. 10. In the stagnation region, 
the propor t iona l i ty  of  the velocity gradient  to the 
radial  coordinate  was found  in agreement  with the 
theory (see Fig. 11). 

Figures 12 to 14 show the experimental  directional  
characteristics with the fitted curves leading to the 
respective ~ values of  0.21, 0.37, and  0.52 assuming 

Fig. 15. Same data as in Fig. 14. ( ) Best fit for 
= 0.75 using the planar flow model instead of the 

axisymmetric flow model. 

an axisymmetric flow. These values compared to the 
respective theoretical values of  0.11, 0.33 and  0.39, 
obta ined  as n = 6 q / q  = A R / A r  = R / r ,  show only an 
approximate  agreement  bu t  do reveal the existence 
of  a no rma l  component .  However,  for the highest n 
value, the use of a p lanar  flow instead of  an axi- 
symmetric one gives a poor  fitting (see Fig. 15) and  
a worse value for n (0.75 instead of  0.52). The 
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observed difference between experimental and theore- 
tical values is probably due to the geometrical imper- 
fections of  the probe with segments of unequal areas 
and too large insulating gaps. 

6. Conclusion 

Axisymmetric flow has a greater influence on the 
directional characteristics of  a three-segment probe 
than planar flow. The difference is particularly impor- 
tant near a stagnation point. In axisymmetric flow 
with separation, the influence of  radial flow prevails 
over the training effect of the front segment at 
t~ = -0 .75 and the directional characteristics are not 
so flattened as in the case of  planar flow. Preliminary 
experiments performed on an impinging jet cell in the 
stagnation region reveal the existence of  a normal 
component but the accuracy of  its evaluation is not 
good due to the deviation from ideal geometry of  
the fabricated probes. There is a need for a geometri- 
cally well-defined probe for quantitative verification 
of the theory. 
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